Location of Repository

The minimal entropy martingale measure for general Barndorff-Nielsen/Shephard models

By Thorsten Rheinlander and Gallus Steiger


We determine the minimal entropy martingale measure for a general class of stochastic volatility models where both price process and volatility process contain jump terms which are correlated. This generalizes previous studies which have treated either the geometric Lévy case or continuous price processes with an orthogonal volatility process. We proceed by linking the entropy measure to a certain semi-linear integro-PDE for which we prove the existence of a classical solution

Topics: QA Mathematics
Publisher: IMS
Year: 2006
DOI identifier: 10.1214/105051606000000240
OAI identifier: oai:eprints.lse.ac.uk:16351
Provided by: LSE Research Online

Suggested articles



  1. (2005). a n dM EYER-BRANDIS, T.
  2. (2005). An entropy approach to the Stein and Stein model with correlation. doi
  3. (2005). CHOULLI,T .a n dS TRICKER, C.
  4. (2002). Exponential hedging and entropic penalties. doi
  5. (2003). FUJIWARA,T .a n dM IYAHARA, Y.
  6. (2001). Geometric Lévy Processes and MEMM pricing model and related estimation problems. doi
  7. (2002). GRANDITS,P .a n dR HEINLÄNDER,
  8. (1991). Hedging of contingent claims under incomplete information. doi
  9. (2003). K ARLSEN,K .H .a n dR EIKVAM, K.
  10. (2005). Minimal entropy preserves the Lévy property: How and why. Stochastic Process. doi
  11. (2001). Modelling by Lévy processes for financial econometrics. doi
  12. (2003). NICOLATO,E .a n dV ENARDOS, E.
  13. (1986). Nonlinear Functional Analysis and its Applications I. Fixed-Point Theorems. doi
  14. (1999). On martingale measures for stochastic processes with independent increments. Theory Probab. doi
  15. (2002). On the existence of minimax martingale measures. doi
  16. (1999). Pricing contingent claims on stocks driven by Lévy processes. doi
  17. (2001). Rational hedging and valuation with utility-based preferences.
  18. (2004). Stochastic volatility models, correlation and the q-optimal measure. doi
  19. (1978). Sur l’intégrabilité uniforme des martingales exponentielles. doi
  20. (2000). The minimal entropy martingale measure and the valuation problem in incomplete markets. doi
  21. (2005). The optimal martingale measure for investors with exponential utility function.
  22. (1963). The variation of certain speculative prices. doi
  23. (2004). Utility indifference hedging and valuation via reaction–diffusion systems. doi
  24. (2001). Utility-based derivative pricing in incomplete markets. doi
  25. (1992). W ANG,J .a n dY AN,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.