Skip to main content
Article thumbnail
Location of Repository

Approximating conditional distribution functions using dimension reduction

By Peter Hall and Qiwei Yao
Topics: HA Statistics
Publisher: Institute of Mathematical Statistics
Year: 2005
DOI identifier: 10.1214/009053604000001282
OAI identifier:
Provided by: LSE Research Online

Suggested articles


  1. (1990). a n dGANGOPADHYAY, A.K.
  2. (2001). a n dH YNDMAN,
  3. (1990). a n dM
  4. (2000). a n dP ATEL, K.
  5. (1987). a n dS IBSON, R.
  6. (1981). a n dS TUETZLE, W.
  7. (1994). a n dT
  8. (2002). a n dY AO, Q.
  9. (1993). An efficient semiparametric estimator for binary response models. doi
  10. (1969). Conditional probability density and regression estimators.
  11. (2002). Dimension reduction for the conditional kth moment in regression. doi
  12. (1996). Estimating and visualizing conditional densities. doi
  13. (2002). Estimating conditional distribution functions using dimension reduction.
  14. (2000). Excess kurtosis of conditional distribution for daily stock returns: The case of Japan. doi
  15. (1987). Exploratory projection pursuit. doi
  16. (1992). FORESI,S .a n dP ARACCHI, F.
  17. (1993). H ALL,P .a n dI CHIMURA, H.
  18. (1995). H ECKMAN,N .E .a n dW
  19. (1980). HALL,P .a n dH EYDE,
  20. (1997). L IU,X .a n dS
  21. (1998). Local linear quantile regression. doi
  22. (1999). Methods for estimating a conditional distribution function. doi
  23. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. doi
  24. (1985). Projection pursuit (with discussion). doi
  25. (2002). Regression quantiles for time series. doi
  26. (1984). S TUETZLE,W .a n dS CHROEDER, A.
  27. (1989). Semiparametric estimation of index coefficients. doi
  28. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of singleindex models. doi
  29. (1953). The statistical analysis of the Canadian lynx cycle. I. Structure and prediction. doi
  30. (1996). Y AO,Q .a n dT

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.