Skip to main content
Article thumbnail
Location of Repository

The influence of opposite examples and randomness on the generalization complexity of Boolean functions

By Leonardo Franco and Martin Anthony


We analyze Boolean functions using a recently proposed measure of their complexity. This complexity measure, motivated by the aim of relating the complexity of the functions with the generalization ability that can be obtained when the functions are implemented in feed-forward neural networks, is the sum of two components. The first of these is related to the ‘average sensitivity’ of the function and the second is, in a sense, a measure of the ‘randomness’ or lack of structure of the function. In this paper, we investigate the importance of using the second term in the complexity measure. We also explore the existence of very complex Boolean functions, considering, in particular, the symmetric Boolean functions

Topics: QA Mathematics
Publisher: Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science
Year: 2003
OAI identifier:
Provided by: LSE Research Online
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.