An AP2 Transcription Factor Is Required for a Sleep-Active Neuron to Induce Sleep-like Quiescence in C. elegans


SummaryBackgroundSleep is an essential behavior that is found in all animals that have a nervous system. Neural activity is thought to control sleep, but little is known about the identity and the function of neural circuits underlying sleep. Lethargus is a developmentally regulated period of behavioral quiescence in C. elegans larvae that has sleep-like properties.ResultsWe studied sleep-like behavior in C. elegans larvae and found that it requires a highly conserved AP2 transcription factor, aptf-1, which was expressed strongly in only five interneurons in the head. Expression of aptf-1 in one of these neurons, the GABAergic neuron RIS, was required for quiescence. RIS was strongly and acutely activated at the transition from wake-like to sleep-like behavior. Optogenetic activation of aptf-1-expressing neurons ectopically induced acute behavioral quiescence in an aptf-1-dependent manner. RIS ablation caused a dramatic reduction of quiescence. RIS-dependent quiescence, however, does not require GABA but requires neuropeptide signaling.ConclusionsWe conclude that RIS acts as a sleep-active, sleep-promoting neuron that requires aptf-1 to induce sleep-like behavior through neuropeptide signaling. Sleep-promoting GABAergic-peptidergic neurons have also been identified in vertebrate brains, suggesting that common circuit principles exist between sleep in vertebrates and sleep-like behavior in invertebrates

Similar works

Full text


Elsevier - Publisher Connector

Provided original full text link
Last time updated on 6/5/2019

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.