We consider a family of functionals $J$ to be maximized over the planar convex sets $K$ for which the perimeter and Steiner point have been fixed. Assuming that $J$ is the integral of a quadratic expression in the support function $h$, we show that the maximizer is always either a triangle or a line segment (which can be considered as a collapsed triangle). Among the concrete consequences of the main theorem is the fact that, given any convex body $K_1$ of finite perimeter, the set in the class we consider that is farthest away in the sense of the $L^2$ distance is always a line segment. We also prove the same property for the Hausdorff distance.Comment: 3 figure
To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.