Article thumbnail

One frame and several new infinite families of Z-cyclic whist designs

By Norman J Finizio

Abstract

AbstractIn 2001, Ge and Zhu published a frame construction which they utilized to construct a large class of Z-cyclic triplewhist designs. In this study the power and elegance of their methodology is illustrated in a rather dramatic fashion. Primarily due to the discovery of a single new frame it is possible to combine their techniques with the product theorems of Anderson, Finizio and Leonard along with a few new specific designs to obtain several new infinite classes of Z-cyclic whist designs. A sampling of the new results contained herein is as follows: (1) Z-cyclic Wh(33p+1), p a prime of the form 4t+1; (2) Z-cyclic Wh(32n+1s+1), for all n⩾1, s=5,13,17; (3) Z-cyclic Wh(32ns+1), for all n⩾1, s=35,55,91; (4) Z-cyclic Wh(32n+1s), for all n⩾1, and for all s for which there exist a Z-cyclic Wh(3s) and a homogeneous (s,4,1)-DM; and (5) Z-cyclic Wh(32ns) for all n⩾1, s=5,13. Many other results are also obtained. In particular, there exist Z-cyclic Wh(33v+1) where v is any number for which Ge and Zhu obtained Z-cyclic TWh(3v+1)

Publisher: Published by Elsevier B.V.
Year: 2004
DOI identifier: 10.1016/S0012-365X(03)00270-X
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://s3.amazonaws.com/prod-... (external link)
  • https://s3-eu-west-1.amazonaws... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.