Article thumbnail

Anion Binding to Nucleic Acids

By Pascal Auffinger, Lukasz Bielecki and Eric Westhof


AbstractNucleic acids are generally considered as efficient cation binders. Therefore, the likelihood that negatively charged ions might intrude their first hydration shell is rarely considered. Here, we show on the basis of (i) a survey of the Nucleic Acid Database, (ii) several structures extracted from the Cambridge Structural Database, and (iii) molecular dynamics simulations, that the nucleotide electropositive edges involving mainly amino, imino, and hydroxyl groups can cast specific anion binding sites. These binding sites constitute also good locations for the binding of the negatively charged groups of the Asp and Glu residues or the nucleic acid phosphate groups. Furthermore, it is observed in several instances that anions, like water molecules and cations, do mediate protein/nucleic acid interactions. Thus, anions as well as negatively charged groups are directly involved in specific recognition and folding phenomena involving polyanionic nucleic acids

Publisher: Cell Press. Published by Elsevier Ltd.
Year: 2004
DOI identifier: 10.1016/j.str.2004.02.015
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://s3-eu-west-1.amazonaws... (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.