Article thumbnail

Subgraph induced by the set of degree 5 vertices in a contraction critically 5-connected graph

By Kiyoshi Ando


AbstractAn edge of a 5-connected graph is said to be contractible if the contraction of the edge results in a 5-connected graph. A 5-connected graph with no contractible edge is said to be contraction critically 5-connected. Let G be a contraction critically 5-connected graph and let H be a component of the subgraph induced by the set of degree 5 vertices of G. Then it is known that |V(H)|≥4. We prove that if |V(H)|=4, then H≅K4−, where K4− stands for the graph obtained from K4 by deleting one edge. Moreover, we show that either |NG(V(H))|=5 or |NG(V(H))|=6 and around H there is one of two specified structures called a K4−-configuration and a split K4−-configuration

Publisher: Elsevier B.V.
Year: 2009
DOI identifier: 10.1016/j.disc.2008.11.004
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • https://s3-eu-west-1.amazonaws... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.