Article thumbnail

First Steps in Synthetic Computability Theory

By Andrej Bauer

Abstract

AbstractComputability theory, which investigates computable functions and computable sets, lies at the foundation of computer science. Its classical presentations usually involve a fair amount of Gödel encodings which sometime obscure ingenious arguments. Consequently, there have been a number of presentations of computability theory that aimed to present the subject in an abstract and conceptually pleasing way. We build on two such approaches, Hyland's effective topos and Richman's formulation in Bishop-style constructive mathematics, and develop basic computability theory, starting from a few simple axioms. Because we want a theory that resembles ordinary mathematics as much as possible, we never speak of Turing machines and Gödel encodings, but rather use familiar concepts from set theory and topology

Publisher: Elsevier B.V.
Year: 2006
DOI identifier: 10.1016/j.entcs.2005.11.049
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://s3-eu-west-1.amazonaws... (external link)
  • https://s3.amazonaws.com/prod-... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.