10.1371/journal.pone.0115765

Tau Reduction Diminishes Spatial Learning and Memory Deficits after Mild Repetitive Traumatic Brain Injury in Mice

Abstract

Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer's disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI). alleles.Repeated (2-hit), but not single (1-hit), mild frontal impact impaired spatial learning and memory in wildtype mice as determined by testing of mice in the Barnes maze one month after the injury. Locomotor activity, anxiety, depression and fear related behaviors did not differ between injured and sham-injured mice. MRI imaging did not reveal focal injury or mass lesions shortly after the injury. Complete ablation or partial reduction of tau prevented deficits in spatial learning and memory after repeated mild frontal impact. Complete tau ablation also showed a trend towards protection after a single controlled cortical impact. Complete or partial reduction of tau also reduced the level of axonopathy in the corpus callosum after repeated mild frontal impact.Tau promotes or enables the development of learning and memory deficits and of axonopathy after mild TBI, and tau reduction counteracts these adverse effects

Similar works

This paper was published in Public Library of Science (PLOS).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.