Skip to main content
Article thumbnail
Location of Repository

Three-Mode Factor Analysis by Means of Candecomp/Parafac

By Alwin Stegeman and Tam T T Lam

Abstract

<p>A three-mode covariance matrix contains covariances of N observations (e.g., subject scores) on J variables for K different occasions or conditions. We model such an JK×JK covariance matrix as the sum of a (common) covariance matrix having Candecomp/Parafac form, and a diagonal matrix of unique variances. The Candecomp/Parafac form is a generalization of the two-mode case under the assumption of parallel factors. We estimate the unique variances by Minimum Rank Factor Analysis. The factors can be chosen oblique or orthogonal. Our approach yields a model that is easy to estimate and easy to interpret. Moreover, the unique variances, the factor covariance matrix, and the communalities are guaranteed to be proper, a percentage of explained common variance can be obtained for each variable-condition combination, and the estimated model is rotationally unique under mild conditions. We apply our model to several datasets in the literature, and demonstrate our estimation procedure in a simulation study. © 2013 The Psychometric Society.</p>

Topics: Candecomp, minimum rank factor analysis; multitrait-multimethod; Parafac; three-mode factor analysis
Year: 2013
DOI identifier: 10.1007/s11336-013-9359-8
OAI identifier: oai:pure.rug.nl:publications/2fd8186c-3209-4b6f-b537-2ffcf98eb443
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1007/s113... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.