Slug Antagonizes p53-Mediated Apoptosis of Hematopoietic Progenitors by Repressing puma


SummaryIn response to DNA damage, the p53 tumor suppressor can elicit either apoptosis or cell-cycle arrest and repair, but how this critical decision is made in specific cell types remains largely undefined. We investigated the mechanism by which the transcriptional repressor Slug specifically rescues hematopoietic progenitor cells from lethal doses of γ radiation. We show that Slug is transcriptionally induced by p53 upon irradiation and then protects the damaged cell from apoptosis by directly repressing p53-mediated transcription of puma, a key BH3-only antagonist of the antiapoptotic Bcl-2 proteins. We established the physiologic significance of Slug-mediated repression of puma by demonstrating that mice deficient in both genes survive doses of total-body irradiation that lethally deplete hematopoietic progenitor populations in mice lacking only slug. Thus, Slug functions downstream of p53 in developing blood cells as a critical switch that prevents their apoptosis by antagonizing the trans-activation of puma by p53

Similar works

Full text


Elsevier - Publisher Connector

Provided original full text link
Last time updated on 6/5/2019

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.