10.1016/0095-8956(71)90016-5

Pancyclic graphs I

Abstract

AbstractA graph G with vertex set V(G) and edge set E(G) is pancyclic if it contains cycles of all lengths l, 3 ≤ l ≤ | V(G) |.Theorem. Let G be Hamiltonian and suppose that |E(G)| ≥ n24, where n = |V(G)|. Then G is either pancyclic or else is the complete bipartite graph Kn2,n2.As a corollary to this theorem it is shown that the Ore conditions for a graph to be Hamiltonian actually imply that the graph is either pancyclic or else is Kn2, n2

Similar works

Full text

thumbnail-image

Elsevier - Publisher Connector

Provided original full text link
Last time updated on 6/5/2019

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.