Differential invariants of generic parabolic Monge-Ampere equations


Some new results on geometry of classical parabolic Monge-Amp\`ere equations (PMA) are presented. PMAs are either \emph{integrable}, or \emph{nonintegrable} according to integrability of its characteristic distribution. All integrable PMAs are locally equivalent to the equation $u_{xx}=0$. We study nonintegrable PMAs by associating with each of them a 1-dimensional distribution on the corresponding first order jet manifold, called the \emph{directing distribution}. According to some property of this distribution, nonintegrable PMAs are subdivided into three classes, one \emph{generic} and two \emph{special} ones. Generic PMAs are completely characterized by their directing distributions, and we study canonical models of the latters, \emph{projective curve bundles} (PCB). A PCB is a 1-dimensional subbundle of the projectivized cotangent bundle of a 4-dimensional manifold. Differential invariants of projective curves composing such a bundle are used to construct a series of contact differential invariants for corresponding PMAs. These give a solution of the equivalence problem for generic PMAs with respect to contact transformations. The introduced invariants measure in an exact manner nonlinearity of PMAs

Similar works

This paper was published in e-Print Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.