Proteomic Analysis of the Function of a Novel Cold-Regulated Multispanning Transmembrane Protein COR413-PM1 in Arabidopsis

Abstract

The plasma membrane is the first subcellular organ that senses low temperature, and it includes some spanning transmembrane proteins that play important roles in cold regulation. COR413-PM1 is a novel multispanning transmembrane cold-regulated protein; however, the related functions are not clear in Arabidopsis. We found the tolerance to freezing stress of cor413-pm1 was lower than wild-type (WT). A proteomics method was used to analyze the differentially abundant proteins (DAPs) between cor413-pm1 and WT. A total of 4143 protein groups were identified and 3139 were accurately quantitated. The DAPs associated with COR413-PM1 and freezing treatment were mainly involved in the metabolism of fatty acids, sugars, and purine. Quantitative real-time PCR (qRT-PCR) confirmed the proteomic analysis results of four proteins: fatty acid biosynthesis 1 (FAB1) is involved in fatty acid metabolism and might affect the plasma membrane structure; fructokinase 3 (FRK3) and sucrose phosphate synthase A1 (SPSA1) play roles in sugar metabolism and may influence the ability of osmotic adjustment under freezing stress; and GLN phosphoribosyl pyrophosphate amidotransferase 2 (ASE2) affects freezing tolerance through purine metabolism pathways. In short, our results demonstrate that the multispanning transmembrane protein COR413-PM1 regulates plant tolerance to freezing stress by affecting the metabolism of fatty acids, sugars, and purine in Arabidopsis

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 04/06/2019

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.