Article thumbnail

Artesunate-Loaded and Near-Infrared Dye-Conjugated Albumin Nanoparticles as High-Efficiency Tumor-Targeted Photo-Chemo Theranostic Agent

By Hainan Yang, Zaijia Liu, Xufeng Li, Zhenfeng Zhang, Deji Chen and Hui Lian


Abstract Herein, a tumor-targeted multifunctional theranostic agent was synthetized using a facile method, combining four clinically approved materials: artesunate (Arte), human serum albumin (HSA), folic acid (FA), and indocyanine green (ICG). The obtained nanocomposites (FA-IHA NPs) showed an excellent photo- and physiological stability. The ICG in the FA-IHA NPs was used not only for near infrared (NIR) fluorescence imaging, but also for photothermal and photodynamic (PTT-PDT) therapy under a single NIR irradiation. In addition, the NIR irradiation (808 nm, 1 W/cm2) could trigger Arte release that showed enhanced chemotherapeutic effect. Through fluorescence imaging, the cell uptake and tumor accumulation of FA-IHA NPs were observed in vitro and in vivo, analyzed by confocal microscopy and NIR fluorescence imaging in tumor xenograft mice. Based on the diagnostic results, FA-IHA NPs at 24 h post injection and combined with NIR irradiation (808 nm, 1 W/cm2) could efficiently suppress tumor growth through a photo-chemo combination therapy, with no tumor recurrence in vitro and in vivo. The obtained results suggested that FA-IHA NPs are promising photo-chemo theranostic agents for future clinical translation

Topics: Theranostic agent, Artesunate, Fluorescence imaging, Reactive oxygen species, Indocyanine green, Materials of engineering and construction. Mechanics of materials, TA401-492
Publisher: SpringerOpen
Year: 2018
DOI identifier: 10.1186/s11671-018-2700-5
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.