Article thumbnail

Biomimetic Surface Structuring Using Laser Based Interferometric Methods

By Andrés Fabián Lasagni, Sabri Alamri, Alfredo Ismael Aguilar-Morales, Florian Rößler, Bogdan Voisiat and Tim Kunze

Abstract

This review investigates the capabilities of laser-based interferometric methods for producing structures with multiple-scaled surface features imitating natural examples. Firstly, laser interference lithography is used to produce hierarchical patterns with length-scales in the micrometer and sub-micrometer range. Different strategies are discussed to produce a wide variety of periodic arrays, depending on the number of resist lasers used as well as the way in which the exposure steps are organized. After that, periodic patterns are fabricated on polymers using ns laser pulses from an UV-laser system. Additionally in this case, multiple-scale patterns are produced by using different strategies. A similar approach is described to treat metallic surfaces of steel X6Cr17 and a titanium alloy Ti6Al4V. The geometry of the produced microstructures was characterized using scanning electron microscopy and confocal microscopy. Measurement of water contact angle is performed for both polymer and metallic surfaces

Topics: biomimetic structures, Direct Laser Interference Patterning, surface functionalization, hierarchical structures, wettability, Technology, T, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Publisher: MDPI AG
Year: 2018
DOI identifier: 10.3390/app8081260
OAI identifier: oai:doaj.org/article:ac9082d3a012443abfe2177db015bd48
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/article/ac908... (external link)
  • http://www.mdpi.com/2076-3417/... (external link)
  • https://doaj.org/toc/2076-3417 (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.