Article thumbnail

Image analysis to qualify soil erodibility into a wind tunnel

By Carlos Asensio, Emilio Rodríguez-Caballero, Francisco Jesús García-Navarro and José Antonio Torres


ABSTRACT A wind erosion research was carried out in a wind tunnel where sediment samples acquired were studied by an artificial vision camera. These images could be enlarged for further analysis. Image analyses were mainly colorimetry, number of particles present and their size. Soil wind erodibility was analyzed with the image analyses supported by other laboratory results. Anthrosols were the most erodible soils, whereas Calcisols showed the highest resistance to the erosive action of wind. Sediment characteristics show the influence of trap height with decreasing particle size, number and darkness as transport height increases. A two-factor ANOVA for main effect height showed that there were significant differences in particle number and size for sediments trapped 0-15 cm and 40-70 cm high. Soils could be grouped by differences in particle number and size at different heights into highly erodible Anthrosols and Leptosols, non-erodible Calcisols and Arenosols, in which fine particles were already depleted by natural wind erosion. Aggregation showed a similar pattern with decreasing values from Calcisols and Leptosols to Anthrosols and finally Arenosols, where only single sand grains were observed in adhesive traps

Topics: Artificial vision camera, soil fertility, semiarid environment., Agriculture (General), S1-972
Publisher: Universidade Federal de Lavras
DOI identifier: 10.1590/1413-70542018423008218
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.