Article thumbnail

Multi-Swarm Multi-Objective Optimizer Based on p-Optimality Criteria for Multi-Objective Portfolio Management

By Yabao Hu, Hanning Chen, Maowei He, Liling Sun, Rui Liu and Hai Shen


Portfolio management is an important technology for reasonable investment, fund management, optimal asset allocation, and effective investment. Portfolio optimization problem (POP) has been recognized as an NP-hard problem involving numerous objectives as well as constraints. Applications of evolutionary algorithms and swarm intelligence optimizers for resolving multi-objective POP (MOPOP) have attracted considerable attention of researchers, yet their solutions usually convert MOPOP to POP by means of weighted coefficient method. In this paper, a multi-swarm multi-objective optimizer based on p-optimality criteria called p-MSMOEAs is proposed that tries to find all the Pareto optimal solutions by optimizing all objectives at the same time, rather than through the above transforming method. The proposed p-MSMOEAs extended original multiple objective evolutionary algorithms (MOEAs) to cooperative mode through combining p-optimality criteria and multi-swarm strategy. Comparative experiments of p-MSMOEAs and several MOEAs have been performed on six mathematical benchmark functions and two portfolio instances. Simulation results indicate that p-MSMOEAs are superior for portfolio optimization problem to MOEAs when it comes to optimization accuracy as well as computation robustness

Topics: Engineering (General). Civil engineering (General), TA1-2040, Mathematics, QA1-939
Publisher: Hindawi Limited
Year: 2019
DOI identifier: 10.1155/2019/8418369
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.