Article thumbnail

A Novel Improved Maximum Entropy Regularization Technique and Application to Identification of Dynamic Loads on the Coal Rock

By Chunsheng Liu and Chunping Ren


A new signal processing algorithm was proposed to identify the dynamic load acting on the coal-rock structure. First, the identification model for dynamic load is established through the relationship between the uncertain load vector, and the assembly matrix of the responses was measured by the machinery dynamic system. Then, the entropy item of maximum entropy regularization (MER) is redesigned using the robust estimation method, and the elongated penalty function according to the ill-posedness characteristics of load identification, which was named as a novel improved maximum entropy regularization (IMER) technique, was proposed to process the dynamic load signals. Finally, the load identification problem is transformed into an unconstrained optimization problem and an improved Newton iteration algorithm was proposed to solve the objective function. The result of IMER technique is compared with MER technique, and it is found that IMER technique is available for analyzing the dynamic load signals due to higher signal-noise ratio, lower restoration time, and fewer iterative steps. Experiments were performed to investigate the effect on the performance of dynamic load signals identification by different regularization parameters and calculation parameters, pi, respectively. Experimental results show that the identified dynamic load signals are closed to the actual load signals using IMER technique combined with the proposed PSO-L regularization parameter selection method. Selecting optimal calculated parameters pi is helpful to overcome the ill-condition of dynamic load signals identification and to obtain the stable and approximate solutions of inverse problems in practical engineering. Meanwhile, the proposed IMER technique can also play a guiding role for the coal-rock interface identification

Topics: Computer engineering. Computer hardware, TK7885-7895
Publisher: Hindawi Limited
Year: 2019
DOI identifier: 10.1155/2019/9602954
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.