Article thumbnail

Split Ring Resonator-based Bandpass Filter with Multi-Transmission Zeros and Flexibly Controllable Bandwidth Using Multipath Source-Load Couplings

By E. S. Kim, K. K. Adhikari and N. Y. Kim

Abstract

This letter presents a high-selectivity compact microstrip bandpass filter (BPF) with a flexibly controllable bandwidth, based on multi-path source-load couplings and a square-type split-ring resonator (STSRR). An STSRR, which is enclosed between the capacitively coupled source and load transmission feed lines, forms the structure of the proposed BPF. The main advantages of the proposed BPF lie in its simple structure and high selectivity due to multiple transmission zeros generated by multipath source-load couplings based on STSRR-enabled magnetic coupling between the feed lines with dual capacitive couplings. In addition, the bandwidth of the proposed BPF can be flexibly controlled by varying the magnetic coupling gap between the STSRR and the feed lines. The measured pass-band insertion and return loss of 0.83 and 27.23 dB, respectively, for a prototype BPF with a central frequency of 3.83 GHz and corresponding bandwidth of 12.98%, demonstrates the validity of the proposed method

Topics: Bandpass filter; compact size; multipath coupling; selectivity; split ring resonator; transmission zero, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Publisher: Spolecnost pro radioelektronicke inzenyrstvi
Year: 2018
OAI identifier: oai:doaj.org/article:97305a7bd03f41159a213dd0a9a63111
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/1210-2512 (external link)
  • https://www.radioeng.cz/fullte... (external link)
  • https://doaj.org/article/97305... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.