Article thumbnail

DNA Barcoding Analysis and Phylogenetic Relation of Mangroves in Guangdong Province, China

By Feng Wu, Mei Li, Baowen Liao, Xin Shi and Yong Xu


Mangroves are distributed in the transition zone between sea and land, mostly in tropical and subtropical areas. They provide important ecosystem services and are therefore economically valuable. DNA barcoding is a useful tool for species identification and phylogenetic reconstruction. To evaluate the effectiveness of DNA barcoding in identifying mangrove species, we sampled 135 individuals representing 23 species, 22 genera, and 17 families from Zhanjiang, Shenzhen, Huizhou, and Shantou in the Guangdong province, China. We tested the universality of four DNA barcodes, namely rbcL, matK, trnH-psbA, and the internal transcribed spacer of nuclear ribosomal DNA (ITS), and examined their efficacy for species identification and the phylogenetic reconstruction of mangroves. The success rates for PCR amplification of rbcL, matK, trnH-psbA, and ITS were 100%, 80.29% ± 8.48%, 99.38% ± 1.25%, and 97.18% ± 3.25%, respectively, and the rates of DNA sequencing were 100%, 75.04% ± 6.26%, 94.57% ± 5.06%, and 83.35% ± 4.05%, respectively. These results suggest that both rbcL and trnH–psbA are universal in mangrove species from the Guangdong province. The highest success rate for species identification was 84.48% ± 12.09% with trnH-psbA, followed by rbcL (82.16% ± 9.68%), ITS (66.48% ± 5.97%), and matK (65.09% ± 6.00%), which increased to 91.25% ± 9.78% with the addition of rbcL. Additionally, the identification rate of mangroves was not significantly different between rbcL + trnH-psbA and other random fragment combinations. In conclusion, rbcL and trnH-psbA were the most suitable DNA barcode fragments for species identification in mangrove plants. When the phylogenetic relationships were constructed with random fragment combinations, the optimal evolutionary tree with high supporting values (86.33% ± 4.16%) was established using the combination of matK + rbcL + trnH-psbA + ITS in mangroves. In total, the 476 newly acquired sequences in this study lay the foundation for a DNA barcode database of mangroves

Topics: mangroves, DNA barcoding, species identification, phylogenetic relation, Plant ecology, QK900-989
Publisher: MDPI AG
Year: 2019
DOI identifier: 10.3390/f10010056
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.