Dynamical Analysis and Optimal Harvesting Strategy for a Stochastic Delayed Predator-Prey Competitive System with Lévy Jumps


This paper develops a theoretical framework to investigate optimal harvesting control for stochastic delay differential systems. We first propose a novel stochastic two-predator and one-prey competitive system subject to time delays and Lévy jumps. Then we obtain sufficient conditions for persistence in mean and extinction of three species by using the stochastic qualitative analysis method. Finally, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of delay differential equations. Moreover, some numerical simulations are given to illustrate the theoretical results

Similar works

Full text


Directory of Open Access Journals

Full text is not available
oaioai:doaj.org/article:0...Last time updated on 6/4/2019

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.