Mode-I Fracture Behavior of CFRPs: Numerical Model of the Experimental Results


In the last decades, the increasing use of laminate materials, such as carbon fibre reinforced plastics, in several engineering applications has pushed researchers to deeply investigate their mechanical behavior, especially in consideration of the delamination process, which could affect their performance. The need for improving the capability of the current instruments in predicting some collapse or strength reduction due to hidden damages leads to the necessity to combine numerical models with experimental campaigns. The validation of the numerical models could give useful information about the mechanical response of the materials, providing predictive data about their lifetime. The purpose of the delamination tests is to collect reliable results by monitoring the delamination growth of the simulated in situ cracking and use them to validate the numerical models. In this work, an experimental campaign was carried out on high performance composite laminates with respect to the delamination mode I; subsequently, a numerical model representative of the experimental setup was built. The ANSYS Workbench Suite was used to simulate the delamination phenomena and modeFRONTIER was applied for the numerical/experimental calibration of the constitutive relationship on the basis of the delamination process, whose mechanism was implemented by means of the cohesive zone material (CZM) model

Similar works

Full text


Directory of Open Access Journals

Full text is not available
oai:doaj.org/article:e68094a229a64216a623dd11ce81d943Last time updated on 6/4/2019

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.