Robot Motion Planning in an Unknown Environment with Danger Space


This paper discusses the real-time optimal path planning of autonomous humanoid robots in unknown environments regarding the absence and presence of the danger space. The danger is defined as an environment which is not an obstacle nor free space and robot are permitted to cross when no free space options are available. In other words, the danger can be defined as the potentially risky areas of the map. For example, mud pits in a wooded area and greasy floor in a factory can be considered as a danger. The synthetic potential field, linguistic method, and Markov decision processes are methods which have been reviewed for path planning in a free-danger unknown environment. The modified Markov decision processes based on the Takagi⁻Sugeno fuzzy inference system is implemented to reach the target in the presence and absence of the danger space. In the proposed method, the reward function has been calculated without the exact estimation of the distance and shape of the obstacles. Unlike other existing path planning algorithms, the proposed methods can work with noisy data. Additionally, the entire motion planning procedure is fully autonomous. This feature makes the robot able to work in a real situation. The discussed methods ensure the collision avoidance and convergence to the target in an optimal and safe path. An Aldebaran humanoid robot, NAO H25, has been selected to verify the presented methods. The proposed methods require only vision data which can be obtained by only one camera. The experimental results demonstrate the efficiency of the proposed methods

Similar works

Full text


Directory of Open Access Journals

Full text is not available
oai:doaj.org/article:fd3098ee908e4005a6edf7f304b6362aLast time updated on 6/4/2019

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.