Article thumbnail

Short-Term Nitrogen Uptake of Barley from Differently Processed Biogas Digestate in Pot Experiments

By Claudia Maurer, Julia Seiler-Petzold, Rudolf Schulz and Joachim Müller


The use of biogas digestate as fertilizer is limited by the farm nutrient balance. Mechanical separation and drying of digestate increases its transport worthiness as well as the economic feasibility of nutrient export. This study compares the fertilizer effect of four treatments of digestate originating from two biogas plants: untreated digestate, liquid and solid fraction of separated digestate and dried solid fraction of separated digestate. Pot experiments with barley were performed with two fertilization levels for different digestate variants. Above-ground biomass yield, nitrogen (N) and phosphorus (P) content in biomass and plant uptake efficiency were highlighted. The results showed that all variants have higher above-ground biomass yield than the control. Due to the reduced amount of easily available N, short-term N uptake of barley from solid fractions of digestate was low. The treatments with the dried solid fraction at low fertilization level showed up to 59% lower N removal from soil and, at high fertilization level, up to 83% lower N removal compared to the respective fresh solid fraction (100%). Depending on the feedstock of biogas plants and processing of digestate, N availability varied and influenced the short-term N uptake. It is recommended that digestate processing should be combined with ammonia recovery to prevent N losses to the environment

Topics: biogas digestate, drying, mechanical separation, plant nitrogen uptake, pot experiments, Technology, T
Publisher: MDPI AG
Year: 2019
DOI identifier: 10.3390/en12040696
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles