10.3762/bjnano.10.40

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

Abstract

In this article, we demonstrate the position-controlled hydrothermal growth of rutile TiO2 nanorods using a new scanning probe lithography method in which a silicon tip, commonly used for atomic force microscopy, was pulled across an anatase TiO2 film. This process scratches the film causing tiny anatase TiO2 nanoparticles to form on the surface. According to previous reports, these anatase particles convert into rutile nanocrystals and provide the growth of rutile TiO2 nanorods in well-defined areas. Due to the small tip radius, the resolution of this method is excellent and the method is quite inexpensive compared to electron-beam lithography and similar methods providing a position-controlled growth of semiconducting TiO2 nanostructures

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

Full text is not available
oai:doaj.org/article:1df8f4d76b2846f180751542fdc4847cLast time updated on 6/3/2019

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.