Hydrogel-Based Plasmonic Sensor Substrate for the Detection of Ethanol


The in-line monitoring of ethanol concentration in liquids is a crucial part of process monitoring in breweries and distilleries. Current methods are based on infrared spectroscopy, which is time-consuming and costly, making these methods unaffordable for small and middle-sized companies. To overcome these problems, we presented a small, compact, and cost-effective sensing method for the ethanol content, based on a nanostructured, plasmonically active sensor substrate. The sensor substrate is coated with an ethanol-sensitive hydrogel, based on polyacrylamide and bisacrylamide, which induces a change in the refractive index of the substrate surface. The swelling and shrinking of such hydrogels offer a means to measure the ethanol content in liquids, which can be determined in a simple transmittance setup. In our study, we demonstrated the capability of the sensor principle for the detection of ethanol content ranging from 0 to 30 vol% ethanol. Furthermore, we determined the response time of the sensor substrate to be 5.2 min, which shows an improvement by a factor of four compared to other hydrogel-based sensing methods. Finally, initial results for the sensor’s lifetime are presented

Similar works

Full text


Directory of Open Access Journals

Full text is not available
oai:doaj.org/article:fa577c617c374406b17af41742bcd0d3Last time updated on 6/3/2019

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.