Protonmotive force driven 6-deoxyglucose uptake by the oral pathogen, Streptococcus mutans Ingbritt


Streptococcus mutans Ingbritt was grown in glucose-excess continuous culture to repress the glucose phosphoenolpyruvate phosphotransferase system (PTS) and allow investigation of the alternative glucose process using the non-PTS substrate, (3H) 6-deoxyglucose. After correcting for non-specific adsorption to inactivated cells, the radiolabelled glucose analogue was found to be concentrated approximately 4.3-fold intracellularly by bacteria incubated in 100 mM Tris-citrate buffer, pH 7.0. Mercaptoethanol or KCl enhanced 6-deoxyglucose uptake, enabling it to be concentrated internally by at least 8-fold, but NaCl was inhibitory to its transport. Initial uptake was antagonised by glucose but not 2-deoxyglucose. Evidence that 6-deoxyglucose transport was driven by protonmotive force (Δp) was obtained by inhibiting its uptake with the protonophores, 2,4-dinitrophenol, carbonylcyanide m-chlorophenylhydrazine, gramicidin and nigericin, and the electrical potential difference (ΔΨ) dissipator, KSCN. The membrane ATPase inhibitor, N,N1-dicyclohexyl carbodiimide, also reduced 6-deoxyglucose uptake as did 100 mM lactate. In combination, these two inhibitors completely abolished 6-deoxyglucose transport. This suggests that the driving force for 6-deoxyglucose uptake is electrogenic, involving both the transmembrane pH gradient (ΔpH) and ΔΨ. ATP hydrolysis, catalysed by the ATPase, and lactate excretion might be important contributors to ΔpH.</p

    Similar works

    Full text


    Southampton (e-Prints Soton)

    Last time updated on 31/05/2019

    This paper was published in Southampton (e-Prints Soton).

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.