Location of Repository

The (spatial) evolution of the equal split

By Jason Alexander and Brian Skyrms

Abstract

The replicator dynamics have been used to study the evolution of a population of rational agents playing the Nash bargaining game, where an individual's "fitness" is determined by an individual's success in playing the game. In these models, a population whose initial conditions was randomly chosen from the space of population proportions converges to a state of fair division approximately 62% of the time. (Higher rates of convergence to final states of fair division can be obtained by introducing artificial correlations into the models.) Spatial models of the Nash bargaining game exhibit considerably more robust convergence properties. These properties are considered at length, and a sufficient condition for convergence to fair division is proved

Topics: QA Mathematics
Publisher: University of California - Irvine
Year: 1999
OAI identifier: oai:eprints.lse.ac.uk:4867
Provided by: LSE Research Online
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.imbs.uci.edu/tr/NEW... (external link)
  • http://eprints.lse.ac.uk/4867/ (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.