Magnetic-Sensitive Nanoparticle Self-Assembled Superhydrophobic Biopolymer-Coated Slow-Release Fertilizer: Fabrication, Enhanced Performance, and Mechanism

Abstract

Although commercialized slow-release fertilizers coated with petrochemical polymers have revolutionarily promoted agricultural production, more research should be devoted to developing superhydrophobic biopolymer coatings with superb slow-release ability from sustainable and ecofriendly biomaterials. To inform the development of the superhydrophobic biopolymer-coated slow-release fertilizers (SBSF), the slow-release mechanism of SBSF needs to be clarified. Here, the SBSF with superior slow-release performance, water tolerance, and good feasibility for large-scale production was self-assembly fabricated using a simple, solvent-free process. The superhydrophobic surfaces of SBSF with uniformly dispersed Fe3O4 superhydrophobic magnetic-sensitive nanoparticles (SMNs) were self-assembly constructed with the spontaneous migration of Fe3O4 SMNs toward the outermost surface of the liquid coating materials (i.e., pig fat based polyol and polymethylene polyphenylene isocyanate in a mass ratio 1.2:1) in a magnetic field during the reaction-curing process. The results revealed that SBSF showed longer slow-release longevity (more than 100 days) than those of unmodified biopolymer-coated slow-release fertilizers and excellent durable properties under various external environment conditions. The governing slow-release mechanism of SBSF was clarified by directly observing the atmosphere cushion on the superhydrophobic biopolymer coating using the synchrotron radiation-based X-ray phase-contrast imaging technique. Liquid water only contacts the top of the bulges of the solid surface (10.9%), and air pockets are trapped underneath the liquid (89.1%). The atmosphere cushion allows the slow diffusion of water vapor into the internal urea core of SBSF, which can decrease the nutrient release and enhance the slow-release ability. This self-assembly synthesis of SBSF through the magnetic interaction provides a strategy to fabricate not only ecofriendly biobased slow-release fertilizers but also other superhydrophobic materials for various applications

Similar works

Full text

thumbnail-image
oaioai:figshare.com:artic...Last time updated on 5/30/2019

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.