Global attractor and asymptotic smoothing effects for the weakly damped cubic Schr\"odinger equation in $L^2(\T)$


We prove that the weakly damped cubic Schr\"odinger flow in $L^2(\T)$ provides a dynamical system that possesses a global attractor. The proof relies on a sharp study of the behavior of the associated flow-map with respect to the weak $ L^2(\T) $-convergence inspired by a previous work of the author. Combining the compactness in $ L^2(\T) $ of the attractor with the approach developed by Goubet, we show that the attractor is actually a compact set of $ H^2(\T) $. This asymptotic smoothing effect is optimal in view of the regularity of the steady states.Comment: Corrected version. To appear in Dynamics of Partial Differential Equation

Similar works

This paper was published in e-Print Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.