Skip to main content
Article thumbnail
Location of Repository

Neocortex's architecture optimizes computation, information transfer and synchronizability at given total connection length

By R Stoop and C Wagner


It is experimental evidence that biological neocortical neurons are arranged in a columnar clustered architecture and coupled according to a bi-power law connection probability function. Using a bi-power connection probability function paradigm, we scan a wide range of network types, for which we compare speed of information propagation. Whereas the information propagation increases linearly in the neighbor order $n$ for $n$-nearest neighbor coupled networks, in our elaborate model of the neocortex, the information propagation speed saturates at a high level even more quickly than in single-power law models, expressing the superiority of the modified network type. We study similarly the network synchronizability as a function of the architecture. The investigations reveal that bi-power connection distributions, which on this level of description are the most refined architectures of the mammalian cortex, optimize information propagation and synchronizability under the constraint of constant total connection length

Topics: Institute of Neuroinformatics, 570 Life sciences; biology
Publisher: World Scientific Publishing
Year: 2007
DOI identifier: 10.1142/S0218127407018373
OAI identifier:
Provided by: ZORA
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.