Skip to main content
Article thumbnail
Location of Repository

Edgeworth expansions for semiparametric averaged derivatives

By Y Nishiyama and Peter Robinson


A valid Edgeworth expansion is established for the limit distribution of density-weighted semiparametric averaged derivative estimates of single index models. The leading term that corrects the normal limit varies in magnitude, depending on the choice of bandwidth and kernel order. In general this term has order larger than the n−1/2 that prevails in standard parametric problems, but we find circumstances in which it is O(n−1/2), thereby extending the achievement of an n−1/2 Berry-Esseen bound in Robinson (1995a). A valid empirical Edgeworth expansion is also established. We also provide theoretical and empirical Edgeworth expansions for a studentized statistic, where some correction terms are different from those for the unstudentized case. We report a Monte Carlo study of finite sample performance

Topics: HB Economic Theory
Publisher: Wiley-Blackwell on behalf of the Econometric Society
Year: 2000
DOI identifier: 10.1111/1468-0262.00142
OAI identifier:
Provided by: LSE Research Online
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.