Electrochemical estimation and control for lithium-ion battery health-aware fast charging

Abstract

Fast charging strategies have gained an increasing interest toward the convenience of battery applications but may unduly degrade or damage the batteries. To harness these competing objectives, including safety, lifetime, and charging time, this paper proposes a health-aware fast charging strategy synthesized from electrochemical system modeling and advanced control theory. The battery charging problem is formulated in a linear time-varying model predictive control algorithm. In this algorithm, a control-oriented electrochemical-thermal model is developed to predict the system dynamics. Constraints are explicitly imposed on physically meaningful state variables to protect the battery from hazardous operations. A moving horizon estimation algorithm is employed to monitor battery internal state information. Illustrative results demonstrate that the proposed charging strategy is able to largely reduce the charging time from its benchmarks while ensuring the satisfaction of health-related constraints

Similar works

Full text

thumbnail-image

Chalmers Research

Full text is not available
oaioai:research.chalmers....Last time updated on 5/7/2019

This paper was published in Chalmers Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.