Article thumbnail

Nonspecific Colloidal-Type Interaction Explains Size-Dependent Specific Binding of Membrane-Targeted Nanoparticles

By Anders Lundgren, Bj\uf6rn Agnarsson, R. Zirbs, Vladimir Zhdanov, E. Reimhult and Fredrik H\uf6\uf6k


Emerging biomedical applications such as molecular imaging and drug delivery often require directed binding of nanoparticles to cell-membrane receptors. The specific apparent affinity of such ligand-functionalized particles is size-dependent, an observation so far solely attributed to multivalent receptor ligand interaction. We question the universality of this explanation by demonstrating that the binding kinetics also depends on weak, attractive colloidal-type interaction between nanoparticles and a lipid membrane. Applying label-free single-particle imaging, we correlate binding of nanoparticles targeted to a cell-mimetic lipid membrane with the distribution of nontargeted particles freely diffusing close to the membrane interface. This analysis shows that already a weak, k(B) T-scale attraction present between 50 nm gold nanoparticles and the membrane renders these particles an order of magnitude higher avidity compared to 20 nm particles. A stronger emphasis on nonspecific particle membrane interaction might thus be required to accurately predict nanoparticle targeting and other similar processes such as cellular uptake of exosomes and viruses

Topics: Nano Technology, quartz crystal microbalance, single-particle imaging, DLVO interaction, lipid-membrane interaction, targeted nanoparticles, light-scattering
Publisher: 'American Chemical Society (ACS)'
Year: 2016
DOI identifier: 10.1021/acsnano.6b04160
OAI identifier:
Provided by: Chalmers Research
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.