Location of Repository

Development of a targeted adductomic method for the determination of polycyclic aromatic hydrocarbon DNA adducts using online column-switching liquid chromatography/tandem mass spectrometry

By Rajinder Singh, Friederike Teichert, Albrecht Seidel, Jonathan Roach, Rebecca Cordell, Mai-Kim Cheng, Heinrich Frank, William P. Steward, Margaret M. Manson and Peter B. Farmer

Abstract

This is the pre-peer reviewed version of the following article: Rapid Communications in Mass Spectrometry, 2010, 24 (16), pp. 2329-2340, which has been published in final form at www3.interscience.wiley.com, Doi: 10.1002/rcm.4645Human exposure to polycyclic aromatic hydrocarbons (PAHs) from sources such as industrial or urban air pollution, tobacco smoke and cooked food is not confined to a single compound, but instead to mixtures of different PAHs. The interaction of different PAHs may lead to additive, synergistic or antagonistic effects in terms of DNA adduct formation and carcinogenic activity resulting from changes in metabolic activation to reactive intermediates and DNA repair. The development of a targeted DNA adductomic approach using liquid chromatography/tandem mass spectrometry (LC/MS/MS) incorporating software-based peak picking and integration for the assessment of exposure to mixtures of PAHs is described. For method development PAH-modified DNA samples were obtained by reaction of the anti-dihydrodiol epoxide metabolites of benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,l]pyrene (DB[a,l]P) and dibenz[a,h]anthracene with calf thymus DNA in vitro and enzymatically hydrolysed to 2 -deoxynucleosides. Positive LC/electrospray ionisation (ESI)-MS/MS collision-induced dissociation product ion spectra data showed that the majority of adducts displayed a common fragmentation for the neutral loss of 116 u (2 -deoxyribose) resulting in a major product ion derived from the adducted base. The exception was the DB[a,l]P dihydrodiol epoxide adduct of 2 -deoxyadenosine which resulted in major product ions derived from the PAH moiety being detected. Specific detection of mixtures of PAH-adducted 2 -deoxynucleosides was achieved using online column-switching LC/MS/MS in conjunction with selected reaction monitoring (SRM) of the [M+H]+ to [M+H-116]+ transition plus product ions derived from the PAH moiety for improved sensitivity of detection and a comparison was made to detection by constant neutral loss scanning. In conclusion, different PAH DNA adducts were detected by employing SRM [M+H-116]+ transitions or constant neutral loss scanning. However, for improved sensitivity of detection optimised SRM transitions relating to the PAH moiety product ions are required for certain PAH DNA adducts for the development of targeted DNA adductomic methods

Topics: Polycyclic aromatic hydrocarbons, DNA adductomics, Online column-switching LC-MS/MS
Publisher: Wiley-Blackwell
Year: 2010
DOI identifier: 10.1002/rcm.4645
OAI identifier: oai:lra.le.ac.uk:2381/8265
Journal:

Suggested articles

Preview

Citations

  1. (2010). A doi
  2. (1983). Cancer Inst. doi
  3. (1983). Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons. doi
  4. (1998). Health Perspect. doi
  5. (1990). JM Covalent bonding of bay-region diol epoxides to nucleic acids. doi
  6. (1983). Nature
  7. (2006). Redox Signaling doi
  8. The authors gratefully acknowledge European Union, Grant QLRT-2001-02402, Environmental Cancer Risk, Nutrition and Individual Susceptibility, a European Union Network of Excellence

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.