Location of Repository

Hypoxia–ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter

By Stephen A. Back, Andrew Craig, Robert J. Kayton, Ning Ling Luo, Charles K. Meshul, Natalie Allcock and Robert Fern

Abstract

This is the author’s submitted draft of the paper published as Journal of Cerebral Blood Flow & Metabolism, 2007, 27 (2), pp. 334–347. The final published version is available at http://www.nature.com/jcbfm/journal/v27/n2/full/9600344a.html, Doi: 10.1038/sj.jcbfm.9600344.Ischemia is implicated in periventricular white matter injury (PWMI), a lesion associated with cerebral palsy. PWMI features selective damage to early cells of the oligodendrocyte lineage, a phenomenon associated with glutamate receptor activation. We have investigated the distribution of glutamate in rat periventricular white matter at post-natal day 7. Immuno-electron microcopy was used to identify O4(+) oligodendroglia in control rats, and a similar approach was employed to stain glutamate in these cells before and after 90 mins of hypoxia–ischemia. This relatively brief period of hypoxia–ischemia produced mild cell injury, corresponding to the early stages of PWMI. Glutamate-like reactivity was higher in oligodendrocytes than in other cell types (2.13±0.25 counts/µm2), and declined significantly during hypoxia–ischemia (0.93±0.15 counts/µm2: P<0.001). Astrocytes had lower glutamate levels (0.7±0.07 counts/µm2), and showed a relatively small decline during hypoxia–ischemia. Axonal regions contained high levels of glutamate (1.84±0.20 counts/µm2), much of which was lost during hypoxia–ischemia (0.72±0.20 counts/µm2: P>0.001). These findings suggest that oligodendroglia and axons are the major source of extracellular glutamate in developing white matter during hypoxia–ischemia, and that astrocytes fail to accumulate the glutamate lost from these sources. We also examined glutamate levels in the choroid plexus. Control glutamate levels were high in both choroid epithelial (1.90±0.20 counts/µm2), and ependymal cells (2.20±0.28 counts/µm2), and hypoxia–ischemia produced a large fall in ependymal glutamate (0.97±0.08 counts/µm2: P>0.001). The ependymal cells were damaged by the insult and represent a further potential source of glutamate during ischemia.Supported by National Institutes of Health (NIH) Grants NS41343 (SAB) and NS44875 (RF) and the March of Dimes Birth Defects Foundation (6-FY05-83; SAB) and the Department of Veterans Affairs Merit Review Program (CKM)

Topics: axon, choroid plexus, glutamate, ischemia, oligodendrocyte, white matter
Publisher: Nature Publishing Group
Year: 2006
DOI identifier: 10.1038/sj.jcbfm.9600344
OAI identifier: oai:lra.le.ac.uk:2381/8043
Journal:

Suggested articles

Preview

Citations

  1. (1998). Ependymal and choroidal cells in culture: characterization and functional differentiation.
  2. (2004). Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. doi
  3. (2000). Glutamate release from developing white matter Correspondence to:

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.