Location of Repository

Polynomial-Time Approximation Schemes for Geometric Intersection Graphs

By Thomas Erlebach, Klaus Jansen and Eike Seidel

Abstract

A disk graph is the intersection graph of a set of disks with arbitrary diameters in the plane. For the case that the disk representation is given, we present polynomial-time approximation schemes (PTASs) for the maximum weight independent set problem (selecting disjoint disks of maximum total weight) and for the minimum weight vertex cover problem in disk graphs. These are the first known PTASs for $\mathcal{NP}$-hard optimization problems on disk graphs. They are based on a novel recursive subdivision of the plane that allows applying a shifting strategy on different levels simultaneously, so that a dynamic programming approach becomes feasible. The PTASs for disk graphs represent a common generalization of previous results for planar graphs and unit disk graphs. They can be extended to intersection graphs of other "disk-like" geometric objects (such as squares or regular polygons), also in higher dimensions

Year: 2005
DOI identifier: 10.1137/S0097539702402676
OAI identifier: oai:lra.le.ac.uk:2381/1813
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/2381/181... (external link)
  • http://epubs.siam.org/doi/abs/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.