A CUDA approach to compute perishable inventory control policies using value iteration

Abstract

<p>Dynamic programming (DP) approaches, in particular value iteration, is often seen as a method to derive optimal policies in inventory management. The challenge in this approach is to deal with an increasing state space when handling realistic problems. As a large part of world food production is thrown out due to its perishable character, a motivation exists to have a good look at order policies in retail. Recently, investigation has been introduced to consider substitution of one product by another, when one is out of stock. Taking this tendency into account in a policy requires an increasing state space. Therefore, we investigate the potential of using GPU platforms in order to derive optimal policies when the number of products taken into account simultaneously is increasing. First results show the potential of the GPU approach to accelerate computation in value iteration for DP.</p

Similar works

Full text

thumbnail-image
Last time updated on 3/31/2019

This paper was published in NARCIS .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.