Article thumbnail

Influences of reactor pressure of GaN buffer layers on morphological evolution of GaN grown by MOCVD

By Chen J, Zhang SM, Zhang BS, Zhu JJ, Shen XM, Feng G, Liu JP, Wang YT, Yang H, Zheng WC and Peoples R China. Beijing 100083 POB 912 State Key Lab Integrated Optoelect Inst Semicond Chinese Acad Sci Chen J

Abstract

The morphological evolution of GaN thin films grown on sapphire by metalorganic chemical vapor deposition was demonstrated to depend strongly on the growth pressure of GaN nucleation layer (NL). For the commonly used two-step growth process, a change in deposition pressure of NL greatly influences the growth mode and morphological evolution of the following GaN epitaxy. By means of atomic force microscopy and scanning electron microscope, it is shown that the initial density and the spacing of nucleation sites on the NL and subsequently the growth mode of FIT GaN epilayer may be directly controlled by tailoring the initial low temperature NL growth pressure. A mode is proposed to explain the TD reduction for NL grown at relatively high reactor pressure. (C) 2003 Elsevier B.V. All rights reserved

Topics: In Situ Laser Reflectometry, Lateral Overgrowths, Surface Morphology, Metalorganic Chemical Vapor Deposition, Gan, Chemical-vapor-deposition, Light-emitting-diodes, Sapphire Substrate, Nucleation Layers, Quality, Temperature, 半导体材料, surface contamination, metal organic chemical vapor deposition, chemical vapor deposition, atomic layer deposition, vapor-plating, light emitting diodes, quality, temperature, 表面重构, surface morphology, surface reconstruction, metal organic vapor phase epitaxy, metallorganic vapor phase epitaxy, mocvd (vapor deposition), movpe (vapor deposition), omcvd (vapor deposition), omvpe (vapor deposition), organo-metal vapor phase epitaxy, organometallic chemical vapor deposition, organometallic vapor phase epitaxy, metalorganic vapor phase epitaxy, metalorganic chemical vapor deposition, organometallic vapor deposition, cvd (chemical vapor deposition), deposition, chemical vapor, vapor deposition, chemical, chemische beschichtung aus dampfphase, revetement chimique en phase vapeur, atomic layer epitaxial growth, ale, mle growth, molecular layer epitaxial growth, chemical beam epitaxial growth, cbe, gas source mbe, gsmbe, metalorganic molecular beam epitaxy, mombe, ommbe, chemical vapour deposition, apcvd, cvd, laser cvd, laser-induced cvd, lpcvd, chemical vapour infiltration, chemical vapor infiltration, cvi, crystal growth from vapour, laser deposition, mocvd, metalorganic chemical vapour deposition, movpe, omcvd, omvpe, molecular beam epitaxial growth, mbe, migration-enhanced epitaxy, vapour phase epitaxial growth, hot wall epitaxial growth, vapor phase epitaxial growth, vpe, cvi (fabrication), ald, molecular beam epitaxy, coulomb-bethe, many-body expansion, 真空镀膜, coating, vacuum, deposition, vapor, vacuum coating, vacuum metallizing, vapor deposition, vapor-phase deposition, bedamfung, deposition de la phase vapeur, cvd (deposition), leds (light emitting diodes), led, organic light emitting diodes, oled, polymer led, superluminescent diodes, led (diodes), light-emitting diodes, leds, organic led, light emitting diode, grades, grades (quality), 温度, curing temperature, temperatur, temperature (francais), body temperature (non-biological), atmospheric temperature, temperature control, water temperature, temperatures, absolute temperature, ambient temperature
Year: 2003
OAI identifier: oai:ir.semi.ac.cn:172111/11482
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://ir.semi.ac.cn/handle/17... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.