Article thumbnail

Automated identification of ERP peaks through Dynamic Time Warping: an application to developmental dyslexia

By S. Assecondi, A.M. Bianchi, H. Hallez, S. Staelens, S. Casarotto, I. Lemahieu and G.A. Chiarenza


Objective: This article proposes a method to automatically identify and label event-related potential (ERP) components with high accuracy and precision. Methods: We present a framework, referred to as peak-picking Dynamic Time Warping (ppDTW), where a priori knowledge about the ERPs under investigation is used to define a reference signal. We developed a combination of peak-picking and Dynamic Time Warping (DTW) that makes the temporal intervals for peak-picking adaptive on the basis of the morphology of the data. We tested the procedure on experimental data recorded from a control group and from children diagnosed with developmental dyslexia. Results: We compared our results with the traditional peak-picking. We demonstrated that our method achieves better performance than peak-picking, with an overall precision, recall and F-score of 93%, 86% and 89%, respectively, versus 93%, 80% and 85% achieved by peak-picking. Conclusion: We showed that our hybrid method outperforms peak-picking, when dealing with data involving several peaks of interest. Significance: The proposed method can reliably identify and label ERP components in challenging event-related recordings, thus assisting the clinician in an objective assessment of amplitudes and latencies of peaks of clinical interest

Topics: Event-related potentials, automated identification, peak-picking, Dynamic Time Warping, developmental dyslexia
Publisher: 'Elsevier BV'
Year: 2009
DOI identifier: 10.1016/j.clinph.2009.06.023
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.