Article thumbnail

The Gravothermal Instability at all scales: from Turnaround Radius to Supernovae

By Zacharias Roupas

Abstract

The gravitational instability, responsible for the formation of the structure of the Universe, occurs below energy thresholds and above spatial scales of a self-gravitating expanding region, when thermal energy can no longer counterbalance self-gravity. I argue that at sufficiently-large scales, dark energy may restore thermal stability. This stability re-entrance of an isothermal sphere defines a turnaround radius, which dictates the maximum allowed size of any structure generated by gravitational instability. On the opposite limit of high energies and small scales, I will show that an ideal, quantum or classical, self-gravitating gas is subject to a high-energy relativistic gravothermal instability. It occurs at sufficiently-high energy and small radii, when thermal energy cannot support its own gravitational attraction. Applications of the phenomenon include neutron stars and core-collapse supernovae. I also extend the original Oppenheimer--Volkov calculation of the maximum mass limit of ideal neutron cores to the non-zero temperature regime, relevant to the whole cooling stage from a hot proto-neutron star down to the final cold state.Comment: Minor amendments to match published versio

Topics: General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - High Energy Astrophysical Phenomena, High Energy Physics - Theory
Publisher: 'MDPI AG'
Year: 2019
DOI identifier: 10.3390/universe5010012
OAI identifier: oai:arXiv.org:1809.07568

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.