oaioai:dc.engconfintl.org:ulsic_tft_6-1009

Low-power display system enabled by combining oxide semiconductor and neural network technologies

Abstract

An oxide semiconductor (OS)-based field effect transistor (OSFET) exhibits the advantage of having an extremely low off-state current; moreover, the OSFET displays an off-state current that is ten orders of magnitude lower than that of a CMOS-FET [1]. Recently, numerous applications that harness this feature have been reported [2]. For instance, charge leakage from a data retention node of a pixel significantly decreases when the display incorporates OSFETs in its pixel circuit (OS display) [3, 4]. This minimizes degradation in the image quality when the displayed image is static despite using lower refresh rates. Consequently, the consumed power of the display driver circuit can be reduced by a large margin. This driving method is termed idling stop (IDS) driving. The OSFET’s low-leakage can also effectively enable a type of ULSICs that we term OS-large-scale integrated circuits (OSLSI) [5, 6]. Please click Additional Files below to see the full abstract

Similar works

Full text

thumbnail-image

Engineering Conferences International

Provided a free PDF
oaioai:dc.engconfintl.org:ulsic_tft_6-1009Last time updated on 2/3/2019View original full text link

This paper was published in Engineering Conferences International.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.