Blocking transport resonances via Kondo many-body entanglement in quantum dots

Abstract

International audienceMany-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show an undiscovered side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic cotunneling lines in the mag-netospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU (2) ⊗ SU (2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin

Similar works

Full text

thumbnail-image

Hal - Université Grenoble Alpes

redirect
Last time updated on 02/02/2019

This paper was published in Hal - Université Grenoble Alpes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.