Measurement of geophysical parameters on clay samples at the solid–fluid transition

Abstract

International audienceFluidisation occurring in clay-rich landslides poses serious threats to populations and infrastructures and has been the subject of numerous studies to apprehend its rheological origin. In parallel, noninvasive geophysical techniques on landslides have known considerable development as a means to approach in-situ geotechnical parameters. This study investigates the influence of fluidisation on two geophysical parameters: the shear wave velocity, Vs, and the electrical resistivity, ρ. Both parameters are widely used in landslide monitoring as they are sensitive, respectively, to soil stiffness and water content, two key parameters for material fluidisation. Laboratory tests were carried out on soil samples collected in five flow-like landslides occurring in very different geological conditions. A plate–plate rheometer was used to provoke fluidisation, and Vs was measured during oscillatory tests. The rheometer was redesigned for resistivity measurements, incorporating circular electrodes in polyvinyl chloride plates. Results show that (i) all soils exhibit a dramatic drop in Vs at the fluidisation, and (ii) the resistivity does not significantly vary at the solid–fluid transition. These last results are analysed in terms of clay particles arrangement using the electrical laws of Archie and Waxman–Smits, and the impact on landslide geophysical monitoring is discussed

Similar works

Full text

thumbnail-image

Hal - Université Grenoble Alpes

redirect
Last time updated on 02/02/2019

This paper was published in Hal - Université Grenoble Alpes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.