Skip to main content
Article thumbnail
Location of Repository

Weakly compact operators and the strong* topology for a Banach space

By Antonio M Peralta, Ignacio Villanueva, J D Maitland Wright and Kari Ylinen

Abstract

Peer reviewedPublisher PD

Topics: QA75 Electronic computers. Computer science, QA75
Year: 31
DOI identifier: 10.1017/S0308210509001486
OAI identifier: oai:aura.abdn.ac.uk:2164/2202
Journal:

Suggested articles

Citations

  1. (1982). [Weakly] compact operators and DF spaces. doi
  2. (1983). A construction of L∞-spaces and related Banach spaces.
  3. (1971). C*-algebras and W*-algebras (Springer, doi
  4. (1977). Classical Banach spaces. I. Sequence spaces,
  5. (1974). Factoring weakly compact operators.
  6. (2001). Grothendieck’s inequalities for real and complex JBW∗-triples.
  7. (1987). Grothendieck’s inequality for JB∗-triples and applications.
  8. (1978). Grothendieck’s theorem for non commutative C∗-algebras with an appendix on Grothendieck’s constant.
  9. (1997). JB∗-triples have Pelczyn´ski’s property V .
  10. (1981). Locally convex spaces
  11. (2004). Multilinear maps on products of operator algebras. doi
  12. (1958). On the conjugate space of operator algebra. doi
  13. (1967). On the preduals of W ∗-algebras.
  14. (1989). On the strong∗ topology of a JBW∗-triple.
  15. (1986). On weakly compact operators on C∗-algebras.
  16. (1956). Re´sume´ de la the´orie me´trique des produits tensoriels topologiques.
  17. (2007). Right topology for Banach spaces and weak compactness.
  18. (1984). Sequences and series in Banach spaces,
  19. (2006). Some remarks on weak compactness in the dual space of a JB∗-triple.
  20. (1967). The dual space of an operator algebra.
  21. The Grothendieck inequality for bilinear forms on C∗-algebras.
  22. (1986). The second dual of a JB∗-triple system. In Complex analysis, functional analysis and approximation theory
  23. (2007). Topological characterisation of weakly compact operators revisited.
  24. (2007). Topological characterisation of weakly compact operators.
  25. (1973). Topological vector spaces
  26. (1988). Topologies and bornologies determined by operator ideals. doi
  27. (1955). Weak compactness and vector measures.
  28. (1972). Weak compactness in the dual space of C∗-algebra.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.