Skip to main content
Article thumbnail
Location of Repository

Testing the Standard Cosmological Model



This thesis exploits the wealth of information contained in the existing cosmological surveys, and demonstrates how the use of tools such as two-point statistics permit the extraction of such information. In particular, the wide field imaging survey – the Sloan Digital Sky Survey (SDSS) in conjunction with Luminous Red Galaxy (LRG) spectroscopic surveys carried out by the Two-degree-Field (2dF) and AAOmega instruments on the Anglo-Australian telescope (AAT) are utilised here. This also includes the observations of the Cosmic Microwave Background (CMB) radiation from the Wilkinson Microwave Anisotropy Probe (WMAP) experiment.\ud \ud Combining the imaging and spectroscopic surveys, we extract three photometric LRG samples at redshift 0.35, 0.55 and 0.7 which cover 7600 deg2 of the sky, probing a total cosmic volume of 5.5 h^−3 Gpc^3. We find very little clustering evolution in these massive early-type galaxies out to z~0.8 or nearly half the age of the Universe. The shape of the large-scale correlation functions is consistent with a simple ‘high-peaks’ bias and linear theory framework of the standard CDM model. The new z=0.7 LRG sample is then\ud used in the CMB-LSS cross-correlation analysis to look for the the Integrated Sachs-Wolfe (ISW) effect as a dynamical evidence for the accelerated expansion of the Universe. The\ud measured zero CMB-LRG correlation is inconsistent with the CDM model expectation at 2.2sigma significance level. Furthermore, our rotation tests show that the previous detections of the ISW effect may not be as significant as previously claimed.\ud \ud We make independent estimates of the WMAP CMB temperature power spectra and show explicitly how sensitive they are to the instrumental beams. We propose an alternative method for determining the beam profiles by stacking radio point sources and demonstrate its robustness via Monte Carlo simulations plus realistic point source detection algorithm. Using this technique, we find significantly wider W-band beam profiles than the WMAP Jupiter beam analysis. We also find a tentative evidence for a non-linearity in the WMAP radio source fluxes when compared with the ground-based\ud measurements. Finally, we investigate if the recently claimed timing offset in the WMAP time-ordered data can explain the observed wider than expected beam profile

Topics: Observational Cosmology, Standard Cosmological model, Large Scale Structure of the Universe, Cosmic Microwave Background radiation
Year: 2011
OAI identifier:
Provided by: Durham e-Theses

Suggested articles


  1. (2000). 2MASS Extended Source Catalog: Overview and Algorithms. doi
  2. (2008). A Comparison of Six Photometric Redshift Methods Applied to 1.5 Million Luminous Red Galaxies. doi
  3. (2008). A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites. doi
  4. (2004). A correlation between the cosmic microwave background and large scale structure in the Universe. doi
  5. (2000). A flat Universe from high resolution maps of the cosmic microwave background radiation.
  6. (2009). A halo model of galaxy colours and clustering doi
  7. (1965). A Measurement of Excess Antenna Temperature at 4080 Mc/s. ApJ, doi
  8. (1996). A method for subtracting foregrounds from multifre quency CMB sky maps**. doi
  9. (2000). A New Method For Galaxy Cluster Detection. I. The Algorithm. doi
  10. (1948). A New Model for the Expanding Universe. doi
  11. (1929). A Relation between Distance and Radial Velocity among Extra Galactic Nebulae. doi
  12. (2006). Adelman McCarthy et al. The Fifth Data Release of the Sloan Digital Sky Survey. doi
  13. (1976). An analytic expression for the luminosity function for galaxies. doi
  14. (1995). An anthropic argument for a cosmological constant. MNRAS, 274:L73– L76, doi
  15. (2002). An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier. doi
  16. (1989). An Extended Galaxy Redshift Survey Part Three Constraints doi
  17. (2008). An Imprint of Superstructures on the Microwave Background due to the Integrated Sachs Wolfe Effect. ApJ, doi
  18. (2008). An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data. ApJ, doi
  19. (1974). An iterative technique for the rectification of observed distributions. doi
  20. (2002). Analysis of Systematic Effects and Statistical Uncertainties
  21. (1977). and three point correlation functions for the high resolution Shane Wirtanen catalog of galaxies. doi
  22. (2011). Angular correlation function of 1.5 million luminous red galaxies: clustering evolution and a search for baryon acoustic oscillations. doi
  23. (1985). Arguments for an Omega = 1, low H0 baryon dominated universe. Vistas in Astronomy, doi
  24. (2010). Asymmetric beams and CMB statistical anisotropy. doi
  25. (2010). Beam profile sensitivity of the WMAP CMB power spec trum. doi
  26. (1993). Bias and variance of angular correlation functions. doi
  27. (1999). Biasing and the distribution of dark matter haloes. doi
  28. (2006). Breaking the hierarchy of galaxy formation. doi
  29. (1999). Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS). doi
  30. (1987). Clustering in real space and in redshift space. doi
  31. (1987). Clusters, filaments, and voids in a universe dominated by cold dark matter. doi
  32. (2004). CMB power spectrum estimation using noncircular beams. doi
  33. (1990). COBE Differential Microwave Radiometers Instrument design and implementation. doi
  34. (1999). Cold collapse and the core catastrophe. doi
  35. (1995). Cold dark matter resuscitated?
  36. (2008). Combined analysis of the integrated Sachs Wolfe effect and cosmological implications. doi
  37. (2005). Correlating the CMB with luminous red galaxies: The integrated Sachs Wolfe effect. doi
  38. (2008). Correlation of CMB with large scale structure. I. Integrated Sachs Wolfe tomography and cosmological implica tions. doi
  39. (1968). Cosmic Black Body Radiation and Galaxy Formation. doi
  40. (1965). Cosmic Black Body Radiation. ApJ, doi
  41. (2002). Cosmic Microwave Background Anisotropies. doi
  42. (2007). Cosmological baryonic and matter den sities from 600000 SDSS luminous red galaxies with photometric redshifts. doi
  43. (2002). Cosmology: The Origin and Evolution of Cosmic Structure, Second Edition.
  44. (2010). Cross correlating WMAP5 with 1.5 million LRGs: a new test for the ISW effect. doi
  45. (2002). Cross Correlation of the Cosmic Microwave Back ground with Radio Sources: Constraints on an Accelerating Universe. Physical Review Letters, doi
  46. (2004). Cross correlation of the cosmic microwave background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources. doi
  47. (2006). Cross correlation of Wilkinson Microwave Anisotropy Probe third year data and the Sloan Digital Sky Survey DR4 galaxy survey: new evidence for dark energy. doi
  48. (2007). Dark energy and curvature from a future baryonic acoustic oscillation survey using the Lyman α forest. doi
  49. (2004). Dark Matter and Dark Energy. In doi
  50. (2007). De tection of the integrated Sachs Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets. doi
  51. (2005). Detection of the Baryon Acoustic Peak in the Large Scale Corre lation Function of SDSS Luminous Red Galaxies. ApJ,
  52. (2003). Detection of the Integrated Sachs Wolfe and Sunyaev Zeldovich Effects from the Cosmic Microwave Background Galaxy Corre lation. ApJ, doi
  53. (2006). Determination of the Cosmic Distance Scale from Sunyaev Zel’dovich Effect and Chandra X Ray Measurements of High Redshift Galaxy Clusters. doi
  54. (2011). Diagnosing timing error doi
  55. (1993). Dipole Anisotropy in the COBE Differential Microwave Radiometers First Year Sky Maps. doi
  56. (2004). Down sizing in galaxy formation at z˜ 1
  57. (2006). Dynamics of Dark Energy. doi
  58. (2000). Efficient computation of CMB anisotropies in closed FRW models. doi
  59. (2001). Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. doi
  60. (2004). Evidence for an extended Sunyaev Zel’dovich effect doi
  61. (2007). Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering. doi
  62. (2004). Evidence from Type Ia Supernovae for an Accelerating Universe and Dark Energy. Measuring and Modeling the Universe, doi
  63. (2005). evolution from the two point correlation function. doi
  64. (1946). Expanding Universe and the Origin of Elements. Physical Review, doi
  65. (2000). Extragalactic Foregrounds of the Cosmic Microwave Background: Prospects for the MAP Mission. ApJ, 531:31–41, doi
  66. (2009). Extragalactic Point Source Search doi
  67. (2001). Fast Algorithms and Efficient Statistics: N Point Correlation Functions. In doi
  68. (2001). Fast Analysis of Inhomogenous Megapixel Cosmic Microwave Background Maps. ApJ, doi
  69. (2004). Fast estimation of polarization power spectra using correlation functions. doi
  70. (2011). Fast Pixel Space Convolution for Cosmic Microwave Background Surveys with Asymmetric Beams and Complex Scan Strategies: FEBeCoP. doi
  71. (2001). Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. ApJ, doi
  72. (2010). First Dark Matter Results from the XENON100 Experiment. Physical Review Letters, doi
  73. (2003). First Year Wilkinson Microwave Anisotropy Probe (WMAP) Obser vations: Determination of Cosmological Parameters. doi
  74. (2003). First Year Wilkinson Microwave Anisotropy Probe (WMAP) Obser vations: Foreground Emission. ApJS,
  75. (2003). First Year Wilkinson Microwave Anisotropy Probe (WMAP) Obser vations: Preliminary Maps and Basic Results. ApJS,
  76. (2003). First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa tions: doi
  77. (2003). First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa tions: Galactic Signal Contamination from Sidelobe Pickup. doi
  78. (2003). First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa tions: The Angular Power Spectrum. ApJS,
  79. (2003). First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions. doi
  80. (2009). Five Year Wilkinson Microwave Anisotropy Probe Observations: doi
  81. (2009). Five Year Wilkinson Microwave Anisotropy Probe Observations: An gular Power Spectra. ApJS, doi
  82. (2009). Five Year Wilkinson Microwave Anisotropy Probe Observations: Beam Maps and Window Functions. doi
  83. (2009). Five Year Wilkinson Microwave Anisotropy Probe Observations: Cos mological Interpretation.
  84. (2009). Five Year Wilkinson Microwave Anisotropy Probe Observations: Galactic Foreground Emission. doi
  85. (2009). Five Year Wilkinson Microwave Anisotropy Probe Observations: Source Catalog. ApJS, doi
  86. (1974). Formation of Galaxies and Clusters of Galaxies by Self Similar Gravitational Condensation. ApJ, doi
  87. (1996). Four Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results. doi
  88. (2007). Fundamentalist physics: why Dark Energy is bad for astronomy. doi
  89. (2001). G´ orski. Fast convolution on the sphere. doi
  90. (2006). Galaxy clustering from COMBO 17: the halo occupation distribution at = 0.6. A&A, doi
  91. (1990). Galaxy correlations on large scales. doi
  92. (1982). Galaxy formation by dissipationless particles heavier than neutrinos. doi
  93. (2001). Galaxy number counts V. Ultradeep counts: the Herschel and Hubble Deep Fields. doi
  94. (2004). Global, exact cosmic microwave background data analysis using Gibbs sampling. doi
  95. (2009). Halo model analysis of the clustering of photometrically selected galaxies from SDSS. doi
  96. (2008). Halo model signatures from 380000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts. doi
  97. (2002). Halo models of large scale structure. doi
  98. (2009). Halo Occupation Distribution Modeling of Clustering of Luminous Red Galaxies. ApJ, doi
  99. (1996). Halo occupation numbers and galaxy bias. doi
  100. (2005). HEALPix: A Framework for High Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. ApJ, doi
  101. (2010). Hot pixel contamination in the CMB correlation function? doi
  102. (2007). How accurate is Limber’s equation? doi
  103. (2000). How Exactly Did the Universe Become Neutral? doi
  104. (2006). How to measure CMB power spectra without losing information. doi
  105. (1981). Inflationary universe: A possible solution to the horizon and flatness prob lems. doi
  106. (2011). Inhomogeneities in the universe. arXiv:1103.5974, doi
  107. (2010). Integrated Sachs Wolfe measurements with photometric redshift surveys: 2MASS results and future prospects. doi
  108. (2004). Is cosmic speed up due to new gravitational physics? doi
  109. (2011). Is the Universe homogeneous? arXiv:1104.1300,
  110. ıtre. Un Univers homog` ene de masse constante et de rayon croissant rendant compte de la vitesse radiale des n´ ebuleuses extra galactiques.
  111. (1935). Kinematics and World Structure. doi
  112. (1917). Kosmologische Betrachtungen zur allgemeinen Relativit¨ atstheorie (Cos mological Considerations in the General Theory of Relativity). Sitzungsberichte der K¨ oniglich Preußischen Akademie der Wissenschaften (Berlin), Seite 142-152.,
  113. (1982). Large scale background temperature and mass fluctuations due to scale invariant primeval perturbations. ApJ, doi
  114. (2008). Limitations of anthropic predictions for the cos mological constant Λ: cosmic heat death of anthropic observers. doi
  115. (1996). Looking for a Cosmological Constant with the Rees Sciama Effect. Physical Review Letters, doi
  116. (2007). Mac´ ıas P´ erez et al. Archeops in flight performance, data processing, and map making.
  117. (2006). MAXIMA: A balloon borne cosmic microwave background anisotropy experiment. doi
  118. (2010). Mea suring Planck beams with planets. doi
  119. (2000). Measurement of a Peak in the Cosmic Microwave Background Power Spectrum from the North American Test Flight of Boomerang. ApJ, doi
  120. (1994). Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. doi
  121. Measuring BAO and non Gaussianity via QSO clustering. MNRAS, doi
  122. (2007). Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey. doi
  123. (2007). MegaZ LRG: a photometric redshift catalogue of one million SDSS luminous red galaxies. doi
  124. (1993). Merger rates in hierarchical models of galaxy formation. doi
  125. (1980). Microwave background radiation as a probe of the contemporary structure and history of the universe. doi
  126. (2009). Mock galaxy redshift catalogues from simulations: implications for Pan STARRS1. doi
  127. (2004). Myths and truths concerning estimation of power spectra: the case for a hybrid estimator. doi
  128. (2007). New Hubble Space Telescope Discoveries of Type Ia Supernovae at z = 1: Narrowing Constraints on the Early Behavior of Dark Energy. doi
  129. (1996). New Insight on Galaxy Formation and Evolution From Keck Spectroscopy of the Hawaii Deep Fields. doi
  130. (2009). New perspective on galaxy clustering as a cosmological probe: General relativistic effects. doi
  131. (2008). Normalization of the Matter Power Spectrum via Higher Order Angular Correlations of Luminous Red Galaxies. ApJ, doi
  132. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. doi
  133. (1936). On Milne’s Theory of World Structure. doi
  134. (2005). On statistical lensing and the anticorrelation between 2dF QSOs and foreground galaxies. doi
  135. (1937). On the Masses of Nebulae and of doi
  136. (2010). On the suspected timing error in Wilkinson microwave anisotropy probe map making. doi
  137. (2010). On the suspected timing offset induced calibration error in the Wilkinson microwave anisotropy probe time ordered data. arXiv:1007.5307,
  138. (2008). Optimising large galaxy surveys for ISW detection. doi
  139. (2007). Optimizing baryon acoustic oscillation surveys I. Testing the concordance ΛCDM cosmology. doi
  140. (2009). Pan STARRS Telescope #1 Status and Science Mission.
  141. (1967). Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. ApJ, doi
  142. (2008). Photometric redshifts for the Dark Energy Survey and VISTA and implications for large scale structure. doi
  143. (2003). Physical Evidence for Dark Energy.
  144. (2011). Planck Early Results: The Early Release Compact Source Catalog. doi
  145. (2010). Planck pre launch status: HFI beam expectations from the optical opti misation of the focal plane. A&A, 520:A12+, doi
  146. (2010). Planck pre launch status: The Planck mission. A&A, 520:A1+,
  147. (1992). Preliminary separation of galactic and cosmic microwave emission for the COBE Differential Microwave Radiometer. ApJ, 396:L7–L12, doi
  148. (2006). Primordial Nucleosynthesis:. Successes and Challenges. doi
  149. (2003). Probing Dark Energy Using Baryonic Oscillations in the Galaxy Power Spectrum as a Cosmological Ruler. ApJ, doi
  150. (2003). Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys. ApJ, doi
  151. (2005). Problems with the Current Cosmological Paradigm.
  152. (2007). QSO lensing magnification: a comparison of 2QZ and Sloan Digital Sky Survey results. doi
  153. (2002). Quantifying angular clustering in wide area radio surveys. doi
  154. (2003). Radio spectra of the WMAP catalog sources.
  155. (1969). Recombination of Hydrogen in the Hot Model of the Universe.
  156. (1991). Reconstructing the primor dial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies. doi
  157. (2008). Red Galaxy Growth and the Halo Occupation Distri bution. doi
  158. (2009). Reliability of the Detection of the Baryon Acoustic Peak. ApJ, doi
  159. (2001). Remarks on the Theory of Cosmological Perturbation. doi
  160. (1998). Removing Point Sources from Cosmic Microwave Background Maps. ApJ, doi
  161. (2006). Report of the Dark Energy Task Force. doi
  162. (2010). Review of Particle Physics. doi
  163. (2011). SDSS III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra Solar Planetary Systems.
  164. (2011). Seven year Wilkinson Microwave Anisotropy Probe (WMAP) Obser vations: Cosmological Interpretation. ApJS, doi
  165. (2011). Seven year Wilkinson Microwave Anisotropy Probe (WMAP) Observa tions: Power Spectra and WMAP derived Parameters. ApJS, doi
  166. (2011). Seven year Wilkinson Microwave Anisotropy Probe (WMAP) Observa tions: Sky Maps, Systematic Errors, and Basic Results. ApJS, doi
  167. (2011). Seven year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission. ApJS, doi
  168. (1996). SExtractor: Software for source extraction. doi
  169. (2003). Stable clustering, the halo model and non linear cosmological power spectra. doi
  170. (1974). Statistical Analysis of Catalogs of Extragalactic Objects. doi
  171. (1999). Statistical lensing of faint QSOs by galaxy clusters. doi
  172. (2006). Statistics of the Galaxy Distribution. Statistics of the Galaxy Distribution, Published by Chapman & Hall/CRC,
  173. (2003). Stellar population synthesis at the resolution of 2003. MNRAS, doi
  174. (2009). Substructure revealed by RRLyraes in doi
  175. (2004). Sunyaev Zeldovich effect in WMAP and its effect on cosmological parameters. doi
  176. (1976). Surface brightness and evolution of galaxies. ApJ, doi
  177. (2009). Systematic distortion in cosmic microwave background maps. doi
  178. (2007). Testing anthropic predictions for Λ and the cosmic microwave background temperature. doi
  179. (1984). Tests of cosmological models constrained by inflation. doi
  180. (2003). The 2dF Galaxy Redshift Survey: correlation functions, peculiar ve locities and the matter density of the Universe.
  181. (2005). The 2dF Galaxy Redshift Survey: power spectrum analysis of the final data set and cosmological implications. doi
  182. (2001). The 2dF Galaxy Redshift Survey: spectra and redshifts. doi
  183. (2002). The 2dF Galaxy Redshift Survey: the bJ band galaxy luminosity function and survey selection function. doi
  184. (2002). The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type. doi
  185. (2003). The 2dF QSO Redshift Survey X. Lensing of background QSOs by galaxy groups. doi
  186. (2000). The 2dF QSO Redshift Survey. doi
  187. (2008). The 2dF SDSS LRG and QSO Survey: evolution of the clustering of luminous red galaxies since z doi
  188. (2006). The 2df SDSS LRG and QSO survey: evolution of the luminosity function of luminous red galaxies to z doi
  189. (2007). The 2dF SDSS LRG and QSO Survey: the LRG 2 point correlation function and redshift space distortions. doi
  190. (1953). The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluc tuating Density Field. ApJ, doi
  191. (1999). The angular correlation function and hierarchical moments of ∼70000 faint galaxies to R=23.5. MNRAS, doi
  192. (2011). The angular power spectra of photometric Sloan Digital Sky Survey luminous red galaxies. doi
  193. (2003). The Anthropic Landscape of String Theory. In The Davis Meeting On Cosmic Inflation, doi
  194. (2008). The Aquarius Project: the subhaloes of galactic haloes. doi
  195. (1993). The Baryon Content of Galaxy Clusters a Challenge to Cosmological Orthodoxy. doi
  196. (2010). The Baryonic Acoustic Feature and Large Scale Clustering in the Sloan Digital Sky Survey Luminous Red Galaxy Sample. ApJ, doi
  197. (1983). The clustering of galaxies in a complete redshift survey. doi
  198. (2007). The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data. doi
  199. (1992). The COBE mission Its design and performance two years after launch. doi
  200. (2007). The Cosmic Evolution Survey (COSMOS): doi
  201. (1997). The Cosmic Microwave Background Spectrum. doi
  202. (1990). The cosmological constant and cold dark matter. doi
  203. (2003). The cosmological constant and dark energy. doi
  204. (1989). The cosmological constant problem. doi
  205. (1992). The cosmological constant. doi
  206. (2001). The Cosmological Constant. Living Reviews in Relativity, 4:1–+, doi
  207. (2004). The Dark Side of the Halo Occupation Distribution. doi
  208. (2008). The detectability of baryonic acoustic oscillations in future galaxy surveys. doi
  209. (1998). The Durham/UKST Galaxy Redshift Survey III. Large scale structure via the two point correlation function. doi
  210. (1998). The Durham/UKST Galaxy Redshift Survey IV. Redshift space distortions in the two point correlation function. doi
  211. (2007). The effect of lensing on the large scale cosmic microwave background anisotropy. doi
  212. (1996). The Evolution of Bias. ApJ, doi
  213. (1985). The evolution of large scale structure in a universe dominated by cold dark matter. doi
  214. (2007). The Evolving Luminosity Function of Red Galaxies. doi
  215. (2008). The extragalactic radio source population at 95GHz.
  216. (2002). The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies doi
  217. (2011). The Haloes of Bright Satellite Galaxies in a Warm Dark Matter Universe. doi
  218. (2005). The Intermediate Scale Clustering of Luminous Red Galaxies. doi
  219. (2001). The large scale smoothness of the Universe. doi
  220. (1980). The large-scale structure of the universe. doi
  221. (1955). The Luminosity Function and Stellar Evolution. doi
  222. (2003). The Microwave Anisotropy Probe Mission. doi
  223. (1974). The Nature of the Distribution of Galaxies. doi
  224. (1998). The NRAO VLA Sky Survey. doi
  225. (1993). The Parkes MIT NRAO (PMN) surveys. I The 4850 MHz surveys and data reduction. doi
  226. (2006). The Planck Collaboration. The Scientific Programme of Planck. doi
  227. (1990). The Redshift Cut Off in the Luminosity Function of Radio Galaxies and Quasars. doi
  228. (2009). The scale of homogeneity of the galaxy distribution doi
  229. (2001). The SDSS Imaging Pipelines. doi
  230. (2003). The spatial clustering of radio sources in NVSS and FIRST; implications for galaxy clustering evolution. doi
  231. (1948). The Steady State Theory of the Expanding Universe. doi
  232. (2002). The Three dimensional Power Spectrum from Angular Clustering
  233. (2006). The Three Dimensional Power Spectrum Measured from the APM Galaxy Survey Part One Use of the Angular Correlation Function. doi
  234. (2004). The Three Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey.
  235. (2007). The UKIRT Infrared Deep Sky Survey (UKIDSS). doi
  236. (2011). The VLT LBG Redshift Survey I. Clustering and dynamics of ≈1000 galaxies at z≈ doi
  237. (2010). The WiggleZ Dark Energy Survey: survey design and first data release. doi
  238. (2007). The WiggleZ Project: AAOmega and Dark Energy.
  239. (2007). Three Year Wilkinson Microwave Anisotropy Probe (WMAP) Ob servations: Implications for Cosmology. ApJS,
  240. (2007). Three Year Wilkinson Microwave Anisotropy Probe (WMAP) Obser vations: Temperature Analysis. doi
  241. (2007). Three Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa tions: doi
  242. (2008). Toward Better Ways to Measure the Galaxy Correlation Function. doi
  243. (1997). Towards optimal measurement of power spectra II. A basis of positive, compact, statistically orthogonal kernels. doi
  244. (1922). Uber die Kr¨ ummung des Raumes. Zeitschrift fur Physik, doi
  245. (2003). What Shapes the Luminosity Function of Galaxies? ApJ, doi
  246. (1999). Where Are the Missing Galactic Satellites? ApJ, doi
  247. (2008). Wilkinson Microwave Anisotropy Probe (WMAP): Five Year Explanatory Supplement. doi
  248. (2001). Window Function for Noncircular Beam Cosmic Microwave Background Anisotropy Experiment. ApJ, doi
  249. (2003). Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: On Orbit Radiometer Characterization. doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.