Article thumbnail

The Weil-Peterson Hessian of Length on Teichmuller Space

By Michael Wolf

Abstract

We present a brief but nearly self-contained proof of a formula for the Weil-Petersson Hessian of the geodesic length of a closed curve (either simple or not simple) on a hyperbolic surface. The formula is the sum of the integrals of two naturally defined positive functions over the geodesic, proving convexity of this functional over Teichmuller space (due to Wolpert (1987)). We then estimate this Hessian from below in terms of local quantities and distance along the geodesic. The formula extends to proper arcs on punctured hyperbolic surfaces, and the estimate to laminations. Wolpert’s result that the Thurston metric is a multiple of the Weil-Petersson metric directly follows on taking a limit of the formula over an appropriate sequence of curves. We give further applications to upper bounds of the Hessian, especially near pinching loci, recover through a geometric argumentWolpert’s result on the convexity of length to the half-power, and give a lower bound for growth of length in terms of twist

Year: 2012
OAI identifier: oai:scholarship.rice.edu:1911/71888
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/1911/718... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.