Article thumbnail

High-power Q-switched erbium-ytterbium codoped fiber laser using multiwalled carbon nanotubes saturable absorber

By M.Z. Ab Razak, Z.S. Saleh, F. Ahmad, C.L. Anyi, Sulaiman Wadi Harun and Hamzah Arof


Due to an enormous potential of pulsed lasers in applications such as manufacturing, metrology, environmental sensing, and biomedical diagnostics, a high-power and stable Q-switched erbium-ytterbium codoped double-clad fiber laser (EYDFL) incorporating of multiwall carbon nanotubes (MWCNTs) saturable absorber (SA) made based on polyvinyl alcohol (PVA) with a 3:2 ratio is demonstrated. The SA was fabricated by mixing a dilute PVA solution with an MWCNTs homogeneous solution. Subsequently, the mixture was sonicated and centrifuged to produce a homogeneous suspension that was left to dry at room temperature to form the MWCNTs-PVA film. The SA was formed by inserting the film between a pair of FC/PC fiber connectors. Then, it was integrated into the EYDFL's ring cavity, which uses a 5-m-long erbium-ytterbium codoped fiber (EYDF). The lasing threshold for the Q-switched EYDFL was at 330 mW. At the maximum available pump power of 900 mW, the proposed EYDFL produced Q-switched pulses with a repetition rate of 74.85 kHz, pulsewidth of ∼3.6 μs, and an average output power of about 5 mW. The maximum energy per pulse of ∼85 nJ was obtained at pump power of ∼700 mW with peak power of 21 mW

Topics: TK Electrical engineering. Electronics Nuclear engineering
Publisher: 'SPIE-Intl Soc Optical Eng'
Year: 2016
DOI identifier: 10.1117/1.OE.55.10.106112
OAI identifier:
Provided by: UM Digital Repository
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles